
Chapter 9
GLM and GAM for Count Data

9.1 Introduction

A generalised linear model (GLM) or a generalised additive model (GAM) consists
of three steps: (i) the distribution of the response variable, (ii) the specification
of the systematic component in terms of explanatory variables, and (iii) the link
between the mean of the response variable and the systematic part. In Chapter 8,
we discussed several different distributions for the response variable: Normal, Pois-
son, negative binomial, geometric, gamma, Bernoulli, and binomial distributions.
One of these distributions can be used for the first step mentioned above. In fact,
later in Chapter 11, we see how you can also use a mixture of two distributions
for the response variable; but in this chapter, we only work with one distribution at
a time.

We spent a lot of time looking at distributions in Chapter 8 because our expe-
rience teaching environmental scientists show that in general they are less familiar
with some of these distributions, especially the negative binomial. Before reading
this chapter, you should ensure that you are familiar with the material described in
Chapter 8.

In this chapter, we focus on count data and use the Poisson and negative binomial
distributions. In the next chapter we concentrate on logistic regression using the
binomial distribution. We also revisit count data in Chapter 11, where we look at
data sets with lots of zeros or no zeros. Models for these types of data use a mixture
of techniques discussed in this and the next chapter.

Good references on GLM include McCullagh and Nelder (1998), Dobson (2002),
and Agresti (2002). It is possible to dedicate an entire book to Poisson or logis-
tic regression (see for examples: Hosmer and Lemeshow, 2000; Collet, 2003). Fox
(2002), Ruppert et al. (2003), Wood (2006), and Keele (2008) are excellent GAM
references.

We start this chapter showing that the linear regression model is also a GLM. This
is merely a pedagogical choice as it allows us to start with something familiar, and
after all, the Gaussian linear regression can also be used for count data, even though
it is not the best option. In Section 9.3, Poisson GLM is introduced using an artificial
data set that we know the regression parameters for. It allows us to demonstrate what
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the model is actually doing. In Section 9.4, we give the likelihood criterion and show
how parameters can be estimated. In Sections 9.5, 9.6, 9.7, 9.8, and 9.9, we discuss
Poisson GLM using a real data set and focus on overdispersion, model selection,
and model validation. In Section 9.10, we present the negative binomial distribution
and show how it can be used if there is overdispersion. Finally we look at GAM.

9.2 Gaussian Linear Regression as a GLM

A GLM consists of three steps:

1. An assumption on the distribution of the response variable Yi. This also defines
the mean and variance of Yi.

2. Specification of the systematic part. This is a function of the explanatory vari-
ables.

3. The relationship between the mean value of Yi and the systematic part. This is
also called the link between the mean and the systematic part.

We discuss these three steps for the Gaussian linear regression model.
Step 1: In a Gaussian linear regression, we assume that the response variable Yi

is normally distributed with mean μi and variance σ 2. The index i refers to a case or
observation.

Step 2: In the second step, we specify the systematic part of the model. This
means that we need to select the explanatory variables. Define the predictor function
η(Xi1, . . ., Xiq) by:

η(Xi1, . . . , Xiq ) = α + β1 × Xi1 + · · · + βq × Xiq (9.1)

The systematic part is given by the predictor function η(Xi1, . . ., Xiq).
Step 3: In the third step, we need to specify the link between the expected value

of Yi (which is μi) and the predictor function η(Xi1, . . ., Xiq). We use the identity
link, which means that μi = η(Xi1, . . ., Xiq).

These three steps give the following GLM:

Yi ∼ N (μi , σ
2)

E(Yi ) = μi and var(Yi ) = σ 2

μi = η(Xi1, · · · , Xiq )

(9.2)

This model is also called a GLM with Gaussian distribution and identity link.
Combining some of the elements in Equation (9.2) gives

E(Yi ) = η(Xi1, · · · , Xiq) = α + β1 × Xi1 + · · · + βq × Xiq
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which is our familiar linear regression model from Chapter 2 and Appendix A. We
can also write it as:

Yi = α + β1 × Xi1 + · · · + βq × Xiq + εi

where εi is normally and independently distributed with mean 0 and variance σ 2.
Examples and further details of the Gaussian GLM with identity link function are
given in Appendix A. In principle, you can use the Gaussian distribution to analyse
count data, but the residuals often show heterogeneity. Options to solve this are a
data transformation or using generalised least squares as discussed in Chapter 4.

The formulation of a generalised additive model with a Gaussian distribution is
similar to the linear regression model, except that in step 2 we use smoothers in the
predictor function:

η(Xi1, . . . , Xiq) = α + f1(Xi1) + · · · + fq (Xiq)

Obviously, we can also have a predictor function with smoothers and parametric
or nominal variables.

9.3 Introducing Poisson GLM with an Artificial Example

In this section, we show the model formulation for a Poisson GLM, and we use an
artificial example to demonstrate what the model is doing. We need the following
three steps for a Poisson GLM:

1. Yi is Poisson distributed with mean μi. By definition of this distribution, the
variance of Yi is also equal to μi.

2. The systematic part is given by η(Xi1, . . ., Xiq) = α + β1 × Xi1 + · · · + βq × Xiq.
3. There is a logarithmic link between the mean of Yi and the predictor function

η(Xi1, . . ., Xiq). The logarithmic link (also called a log link) ensures that the
fitted values are always non-negative.

As a result of these three steps, we get

Yi ∼ P(μi )

E(Yi ) = μi and var(Yi ) = μi

log(μi ) = η(Xi1, · · · , Xiq ) or μi = eη(Xi1.··· ,Xiq )

(9.3)

The Poisson GLM is particularly useful for count data as these tend to be het-
erogeneous and are always non-negative; both aspects are dealt with by the Poisson
GLM.

In the remaining part of this section, we use an artificial data set to explain what
a Poisson GLM model is doing. Creating artificial data is simple; choose some
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arbitrary values for an intercept and slope, then choose arbitrary values for a covari-
ate, and calculate some fitted values. We will start with the covariate Xi, which takes
the values 0, 1, 2, 3, 4, 5, . . ., 100. We arbitrarily choose an intercept of 0.01 with a
slope of 0.03 and calculate the fitted values μi using the equation:

μi = exp(0.01 + 0.03 × Xi )

The problem is that in reality, we never measure a count of exp(0.01) or
exp(0.03 + 0.01 × 1), because a count is an integer. We therefore sampled one
value from a Poisson distribution with mean μi and the resulting value is Yi. This
process is repeated for each i = 1, . . ., 101. A scatterplot of Xi and Yi is given in
Fig. 9.1. We fitted a Poisson GLM on these data (on the Xi and Yi), which gave
an estimated intercept and slope, and these allowed us to draw the fitted line in
Fig. 9.1. Note the line shows an exponential relationship. The scatter of points
around the line in Fig. 9.1 gives an idea of how much variation to expect from a
Poisson distribution with values between 0 and 30 (the range of the vertical axis).

The same exponential line is shown in Fig. 9.2, except that the third axis now
shows the probability of other realisation. At several values along the covariate,
where X = 2, 15, 30, 50, and 75, we calculated the fitted values (the Y values in
Fig. 9.2), which are the means μi of the Poisson distributions in Fig. 9.2. Note how
the shape of the Poisson density curves change from small skewed curves to wide
symmetric curves.

In this section, we pretended that we knew the intercept α and slope β, which
allowed us to calculate the fitted values μi used to generate the count data Yi. Obvi-
ously, in real life, the situation is the opposite way around. In real life, we measure Yi

and Xi, and do not know α and β (and therefore also μi). Hence, we need a mecha-
nism that estimates the values of α and β, and this is discussed in the next section.
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Fig. 9.1 Artificial data with a GLM Poisson model fitted. The fitted line is obtained from the GLM
model, and X is the covariate with values from 0 to 100
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Fig. 9.2 Example of a Poisson GLM. The plane in the x–y axes shows the same exponential curve
as in Fig. 9.1. The vertical lines along the third axis show Poisson probability curves at different
values of the covariate: X = 2, 15, 30, 50, and 75. The widths of the probability curves show the
spread of the data. This is the same graph as Fig. 2.5, except that we use a Poisson GLM here

9.4 Likelihood Criterion

The Poisson distribution was discussed in Chapter 8. Recall that it is given by

f (yi ; μi ) = μ
yi

i × e−μi

yi !
yi ≥ 0, yi integer

It gives the probability that a particular yi value is observed for a given mean μi.
Within the context of a GLM, we add an index i to μ, and μi is a function of the
covariates:

μi = eα+β1 X1i +···+βq Xiq

The unknown parameters that we need to estimate are the intercept and slopes.
In linear regression, we used ordinary least squares to minimise the residual sum of
squares. Here, we use maximum likelihood estimation.

The principle of maximum likelihood estimation is that we specify a joint like-
lihood criterion L for all observed data y1 to yn, and we maximise this likelihood
criterion as a function of the unknown regression parameters. Formulated differ-
ently, what are the values of the regression parameters such that the probability L of
the observed data is the highest? The starting point is

L = Probability(Y1 = y1 and Y2 = y2 and . . . and Yn = yn)

Because we assume independence of the observations, we can use the basic prob-
ability rule P(A and B) = P(A) × P(B). As a result the likelihood function, L can be
written as
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L =
∏

i

μyi × e−μi

yi !

The roman pillar symbol stands for multiplication, and the Poisson distribution
function was used for the probability that Yi is yi. From this point onwards, it is
merely a matter of mathematics; how can we maximise L as a function of the regres-
sion parameters? To simplify the maximisation process, we make the likelihood cri-
terion L additive by working with the logarithm of the likelihood:

log(L) =
∑

i

(
log(μyi × e−μi ) − log(yi !)

)

=
∑

i

(
log(μyi ) + log(e−μi ) − log(yi !)

)

=
∑

i
(yi × log(μi ) − μi − log(yi !))

=
∑

i

(
yi × Xi × β − eXi ×β − log(yi !)

)

(9.4)

To speed up the numerical optimisation routines, we could drop the log(yi!)
term as it does not contain any regression parameters. You may remember from
high school mathematics that to optimise a function, we need to obtain first-order
derivatives, set them to 0 and solve the equations. The first-order derivatives are
given by

∂ log(L)

∂β
=

∑
i
(yi × Xi − Xi × eXi ×β) =

∑
i
Xi × (yi − μi )

Setting these to 0 gives

∑

i

Xi × (yi − μi ) = 0 (9.5)

For the Gaussian linear regression model with an identity link, this gives a closed
form solution. This means we get nice expressions for the unknown parameters
that can easily be calculated. However, for most of the other distributions and link
functions, this is not the case. Instead, we get a set of equations that have to be solved
iteratively. A so-called iteratively reweighted least squares (IRWLS) algorithm is
applied, and the numerical output of the GLM function in R has a sentence telling
you how many iterations were carried out. To obtain standard errors for the para-
meters, we also need second-order derivatives of the log likelihood function, but we
do not present them here.

If you open a book on GLM, it will be hard to find the likelihood equations for a
Poisson GLM, as most books present these equations in terms of the general notation
we used in Chapter 8. The advantage of this general notation is that, provided we use a
canonical link (e.g. the log for a Poisson, or identity link for the Gaussian distribution),
the internal mathematics of all GLMs can be written in the same way and with the same
variable names that we used in Chapter 8. This makes it easy to program. However,
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from a pedagogical point of view, we decided to focus first on the Poisson GLM,
and then to mention the possibility of rewriting it in abstract, and general, mathe-
matical notation. We refer the interested reader to McCullagh and Nelder (1989).

9.5 Introducing the Poisson GLM with a Real Example

9.5.1 Introduction

In Section 9.3, we arbitrarily chose a set of regression parameters and created arti-
ficial count data. It allowed us to explain the underlying concept of Poisson GLM
and give an impression of how much variation can be expected in the data if they are
from a Poisson distribution. In Section 9.4, we formulated the maximum likelihood
criterion and presented the first-order derivatives. Luckily, other people have written
software code that uses the log likelihood criterion and the equations for first-order
derivatives to obtain parameter estimates. In this section, we show how to use the
software and present a detailed example. Because we are now going to use a real
example, all the misery will come at the same time.

The data used here (and in various other sections in this chapter) are fully anal-
ysed in Chapter 16 as a case study. It should be noted that a Poisson GLM is not
the best tool to analyse these data, but it serves as a convenient example of how to
progress through all steps of a GLM for count data.

The data set consists of roadkills of amphibian species at 52 sites along a road in
Portugal. A scatterplot of the response variable roadkills against a possible explana-
tory variable ‘distance to the natural park’, denoted by D.PARK, is given in Fig. 9.3.
The biological interpretation of ‘distance to the park’ is given in Chapter 16.
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Fig. 9.3 Scatterplot of amphibian road kills versus distance (in metres) to a nearby Natural Park
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The data are counts, and there seems to be a non-linear, perhaps exponential,
relationship between roadkills and D.PARK. Also note that the variation is larger
for larger values of roadkills. Taken together, this gives us all the ingredients for a
Poisson GLM. Starting with only D.PARK as an explanatory variable, and ignoring
the other 10 explanatory variables, is a pedagogical choice for presenting Poisson
GLM in a textbook and is not a general recommendation for analysing these data.
The following Poisson GLM was applied.

1. Yi, the number of killed animals at site i, is Poisson distributed with mean μi.
2. The systematic part is given by η(D.PARKi) = α + β × D.PARKi.
3. There is a logarithm link between the mean of Yi and the predictor function

η(D.PARKi).

As a result of these three steps, we have

Yi ∼ p(μi )

E(Yi ) = μi and var(Yi ) = μi

log(μi ) = α + β × D.PARKi or μi = eα+β×D.PARKi

(9.6)

We now discuss how to fit this model in R.

9.5.2 R Code and Results

The following R code accesses the data, produces Fig. 9.3, applies the GLM, and
presents the results.

> library(AED); data(RoadKills)

> RK <- RoadKills #Saves some space in the code

> plot(RK$D.PARK, RK$TOT.N, xlab = "Distance to park",

ylab = "Road kills")

> M1 <- glm(TOT.N ∼ D.PARK, family = poisson, data = RK)

> summary(M1)

The only new code here compared to linear regression (see Chapter 2 and
Appendix A) is using the glm command instead of the lm command and the option
family = poisson. Using family = gaussian applies linear regression,
but we will not do that here (in fact, it is easier just to use the function lm for lin-
ear regression). The output of the summary command is slightly different from the
summary output of an lm command and is given by:
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Call:

glm(formula = TOT.N ˜ D.PARK, family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-8.1100 -1.6950 -0.4708 1.4206 7.3337

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.316e+00 4.322e-02 99.87 <2e-16

D.PARK -1.059e-04 4.387e-06 -24.13 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1071.4 on 51 degrees of freedom

Residual deviance: 390.9 on 50 degrees of freedom

AIC: 634.29

Number of Fisher Scoring iterations: 4

The first two lines tell us which model has been fitted, which is handy if you save
the output into a word processor document. Basic numerical information on the
residuals is also provided, although in Section 9.8 we present more useful graphical
tools that can be used for the model validation process. The estimated intercept and
slope are 4.31 and –0.000106, respectively. Keep in mind that distance to the park is
expressed in metres. To avoid parameter estimates with lots of zeros, you could (and
perhaps should) express it in kilometres, as it will save some ink when presenting
the estimated slope on paper. We also get a z-statistic and corresponding p-value for
testing the null hypothesis that the slope (and intercept) is equal to 0 and an AIC,
which can be used for model selection. The z-statistic is used because we know the
variance. In a Gaussian model, the variance is estimated as well, and therefore, a
t-statistic is used.

9.5.3 Deviance

The null and residual deviances are new phrases, and these are sort of maximum
likelihood equivalents of the total sum of squares and the residual sum of squares,
respectively. For the Poisson GLM, the residual deviance is defined as twice the
difference between the log likelihood of a model that provides a perfect fit (also
called the saturated model) for the model under study:

Residual deviance = 2 log(L(y; y)) − 2 log(L(y; μ)) = 2
∑

i

(yi log
yi

μi
− (yi − μi ))
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The notation y refers to a vector of all observations y1 to yn, and the same holds
for the mean μ. The null deviance is the residual deviance in the model that only
contains an intercept. Hence, the null deviance corresponds to the worst possible
model (only an intercept), the residual deviance of the model under study, and the
deviance of the saturated model from the best possible fit.

We do not have an R2 in GLM models, but the closest we can get is the explained
deviance, which is calculated as

100 × null deviance − residual deviance

null deviance
= 100 × 1071.4 − 390.9

1071.4
= 63.51%

So the explanatory variable distance to the park explains 63.51% of the variation
in road kills. Dobson (2002) called this proportional increase in explained deviance
the pseudo R2.

The smaller the residual deviance, the better is the model. Some statistics pro-
grams also quote a p-value as it is supposedly Chi-square distributed with n – p
degrees of freedom, where p is the number of regression parameters in the model and
n the number of observations. However, using the residual deviance as a goodness-
of-fit measure is not without controversy; see McCullagh and Nelder (pg. 118–119,
1989). They argue that (at least for the binomial GLM) a large value of the residual
deviance cannot always be seen as evidence of a poor fit.

The residual deviance is also sometimes called the deviance.

9.5.4 Sketching the Fitted Values

Before discussing how to assess the numerical output presented in Section 9.5.2, we
will outline what the model is doing. But first we need to calculate the predicted
values from the model and add these as a line in Fig. 9.3.

The function predict produces either predicted values on the scale of the pre-
dictor function or on the scale of the response variable. In the first case, we use
the values η(D.PARKi) = 4.13 – 0.0000106 × D.PARKi, and in the second case,
exp(η (D.PARKi)) = exp(4.13 – 0.0000106 × D.PARK i). If we want to show how
good (or bad) the model fits the observed data, we should use the predicted values
on the scale of the response variable (after taking the exponential).

Drawing the line is now simply a matter of sticking in a couple of values for
D.PARK and calculating the fitted values. Instead of doing this manually, we can do
it with a few commands in R. The code uses the plot command for Fig. 9.3 and
the glm command we have already run.

> MyData <- data.frame(D.PARK = seq(from = 0,

to = 25000, by = 1000))
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> G <- predict(M1, newdata = MyData, type = "link",

se = TRUE)

> F <- exp(G$fit)

> FSEUP <- exp(G$fit + 1.96 * G$se.fit)

> FSELOW <- exp(G$fit - 1.96 * G$se.fit)

> lines(MyData$D.PARK, F, lty = 1)

> lines(MyData$D.PARK, FSEUP, lty = 2)

> lines(MyData$D.PARK, FSELOW, lty = 2)

You will find similar (and more extensive code) in the so-called white book on
the S language (on which R is based), written by Chambers and Hastie (1992). We
first create a new data frame MyData. The variables inside this data frame must
have exactly the same names as the explanatory variables in the glm command; in
this case there is only D.PARK. In the data frame, you can specify new values for
the explanatory variables. The predict command takes as arguments the object
from the glm function (M1), the data frame with the new values of the explanatory
variables, an argument type that tells the predict function at which level to pre-
dict (either the scale of the predictor function, or the response variables, and whether
you want to have confidence intervals around the predicted line. We predicted at the
level of the predictor function; so we get confidence bands that do not contain 0
and are asymmetric. Obviously, we have to do some basic maths ourselves, and the
results are given in Fig. 9.4. Note the exponential shape of the curve and the increase
in the width of the confidence bands for larger fitted values.
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Fig. 9.4 Observed roadkills with a fitted Poisson GLM curve (solid line) and 95% confidence
bands (dotted lines). Note the clear exponential shape of the curve. For smaller fitted values, there
are groups of residuals above and below the fitted line. This is not good, and we need to deal with
this in the model validation!
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9.6 Model Selection in a GLM

9.6.1 Introduction

So far, we have only discussed the interpretation of the model in terms of an expo-
nential curve fitted through a set of points; we now concentrate on things like
model selection, hypothesis testing, and model validation. However, applying a
model selection with only one explanatory variable is a bit unrealistic, so we now
add a few more explanatory variables. The amphibian roadkills data set contains
17 explanatory variables. A list of these variables and abbreviations is given in
Table 16.1. Some of the explanatory variables were square root transformed because
of large values. Using variance inflation factors (Appendix A), a sub-selection of
nine variables is made in Chapter 16 and we use the same sub-selection here. Note,
this is still a relatively high number of explanatory variables for a data set with only
52 observations! A Poisson GLM for the roadkills data with nine variables is spec-
ified in a very similar way as in Equation (9.4), except that the systematic part now
contains all nine explanatory variables (we have no biological reasons to believe
there are interactions).

9.6.2 R Code and Output

The following R code implements the Poisson GLM with nine explanatory
variables.

> RK$SQ.POLIC <- sqrt(RK$POLIC)

> RK$SQ.WATRES <- sqrt(RK$WAT.RES)

> RK$SQ.URBAN <- sqrt(RK$URBAN)

> RK$SQ.OLIVE <- sqrt(RK$OLIVE)

> RK$SQ.LPROAD <- sqrt(RK$L.P.ROAD)

> RK$SQ.SHRUB <- sqrt(RK$SHRUB)

> RK$SQ.DWATCOUR <- sqrt(RK$D.WAT.COUR)

> M2 <- glm(TOT.N ˜ OPEN.L + MONT.S + SQ.POLIC +

D.PARK + SQ.SHRUB + SQ.WATRES + L.WAT.C +

SQ.LPROAD + SQ.DWATCOUR, family = poisson,

data = RK)

> summary(M2)

The code is self-explanatory, and the relevant output of the summary command
is given by

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.749e+00 1.567e-01 23.935 < 2e-16

OPEN.L -3.025e-03 1.580e-03 -1.915 0.055531
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MONT.S 8.697e-02 1.359e-02 6.398 1.57e-10

SQ.POLIC -1.787e-01 4.676e-02 -3.822 0.000133

SQ.SHRUB -6.112e-01 1.176e-01 -5.197 2.02e-07

SQ.WATRES 2.243e-01 7.050e-02 3.181 0.001468

L.WAT.C 3.355e-01 4.127e-02 8.128 4.36e-16

SQ.LPROAD 4.517e-01 1.348e-01 3.351 0.000804

SQ.DWATCOUR 7.355e-03 4.879e-03 1.508 0.131629

D.PARK -1.301e-04 5.936e-06 -21.923 < 2e-16

Dispersion parameter for poisson family taken to be 1

Null deviance: 1071.44 on 51 degrees of freedom

Residual deviance: 270.23 on 42 degrees of freedom

AIC: 529.62

9.6.3 Options for Finding the Optimal Model

We want to know which explanatory variables are important, and because some
terms are not significant, it is time for a model selection. The process is similar
to the one used for linear regression (Appendix A). We can use either a selection
criterion like the AIC or use a hypothesis testing approach.

Automatic forward, backward, and forward and backward selection can be
applied with the command step(M2). Results are not presented here, but a back-
ward selection indicates that no term should be dropped.

For the hypothesis testing approach, we have three options:

1. Test the null hypothesis H0: β i = 0 using the z-statistic. This is the equiva-
lent of the t-statistic in linear regression. This approach suggests to drop first
SQ.DWATCOUR as it is the least significant term and then to refit the model and
see whether there are still non-significant terms in the model.

2. Use the drop1(M2,test= "Chi") command, which drops one explanatory
variable, in turn, and each time applies an analysis of deviance test. We explain
this process below.

3. Use the anova(M2) command, which applies a series of analysis of deviance
tests by removing each term sequential. We explain at the end of Subsection 9.6.5
how this process works.

Steps 2 and 3 are similar to the anova and drop1 functions in linear regression,
except that in linear regression we used an F test based on residual sum of squares
of a full and a nested model. A nested model is defined as a model that is obtained
from the full model by setting certain parameters equal to 0. We do not have residual
sum of squares in Poisson GLM. Well, actually we do, but they are not used in these
tests (residuals are discussed in Section 9.8). Instead, we use the residual deviance
of two nested models.
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9.6.4 The Drop1 Command

Suppose we have two models: model M1 contains all nine explanatory variables,
and in model M2 we dropped the explanatory variable OPEN.L. So now the number
of parameters for M1 is p1 = 9 and for M2 is p2 = 8. Obviously, the deviance of M1

will always be equal or lower than the deviance of M2, simply because it has one
extra parameter. The null hypothesis is that the regression parameter β for OPEN.L
equals 0. Under the null hypothesis, both deviances are equal, and therefore, a large
difference between the deviances is evidence against the null hypothesis.

Let D1 and D2 be the deviances of models M1 and M2, respectively. The dif-
ference between D2 and D1 is asymptotically Chi-square distributed with p1 − p2

degrees of freedom. In formula

D2 − D1 ∼ X2
p1−p2

(9.7)

The drop1(M2,test = "Chi") command drops each explanatory variable
in turn, and each time it calculates the difference in Equation (9.7) and compares
the difference to a Chi-square distribution; see the following output.

Single term deletions

Model: TOT.N ∼ OPEN.L + MONT.S + SQ.POLIC + SQ.SHRUB +

SQ.WATRES + L.WAT.C + SQ.LPROAD + SQ.DWATCOUR +

D.PARK

Df Deviance AIC LRT Pr(Chi)

<none> 270.23 529.62

OPEN.L 1 273.93 531.32 3.69 0.0546474

MONT.S 1 306.89 564.28 36.66 1.410e-09

SQ.POLIC 1 285.53 542.92 15.30 9.181e-05

SQ.SHRUB 1 298.31 555.70 28.08 1.167e-07

SQ.WATRES 1 280.02 537.41 9.79 0.0017539

L.WAT.C 1 335.47 592.86 65.23 6.648e-16

SQ.LPROAD 1 281.25 538.64 11.02 0.0009009

SQ.DWATCOUR 1 272.50 529.89 2.27 0.1319862

D.PARK 1 838.09 1095.48 567.85 < 2.2e-16

The model containing all explanatory variables has a deviance of 270.3. If we
drop OPEN.L, the deviance is 273.93: a difference of 3.69. The statistic X2 =
3.69 follows (approximately) a Chi-square distribution with 1 degree of freedom,
which gives a p-value of 0.054. This can be double checked with the R command:
1 – pchisq (3.69 ,1).

Note that the analysis of deviance does not give exactly the same p-value as the
z-statistic. This is because both tests are approximate. If in doubt, use the analysis
of deviance test. The advantage of using the analysis of deviance test is that it also
gives a p-value for a nominal variable.
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9.6.5 Two Ways of Using the Anova Command

The same p-value for OPEN.L can be obtained by fitting a model with all explana-
tory variables (which is M2), a model without OPEN.L, and then use the anova
command to compare the two models with an analysis of deviance. This is done
with the following R code:

> M3 <- glm(TOT.N ∼ MONT.S + SQ.POLIC + D.PARK +

SQ.SHRUB + SQ.WATRES + L.WAT.C + SQ.LPROAD +

SQ.DWATCOUR, family = poisson, data = RK)

> anova(M2, M3, test = "Chi")

The output is given by

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 42 270.232

2 43 273.925 -1 -3.693 0.055

If you use this output in a paper or report, then you should write that the dif-
ference in deviance is 3.69 and approximately follows a Chi-square distribution
with 1 degree of freedom. We have seen papers where a Chi-square distribution with
43 degrees of freedom was quoted from the output above, which is clearly wrong!

Be careful when using the command anova(M2); it applies an analysis of
deviance test, but now the terms are removed sequentially and the order depends
on the order they were typed. This is useful if all explanatory variables are indepen-
dent or if the last term is an interaction.

9.6.6 Results

Using the drop1 function, we decided to remove the variable SQ.DWATCOUR.
Refitting the model resulted in all explanatory variables being significant at the 5%
level. This suggests that we are finished with the model selection process, and can
proceed to the model validation process. However, things are never that easy. The
results of the summary command presented above had a small sentence that said:
‘overdispersion parameter for Poisson family taken to be 1’. This does not mean
that the overdispersion really is 1; it just says it was taken as 1.We promised more
misery, and overdispersion is the next stage.

In the next section, we show that all the results presented in this section can be
put in the bin, because of overdispersion. If you analyse your own data, you should
always first check for overdispersion, before doing any model selection or interpre-
tation of the results. The reason why we did not start by looking at overdispersion
was because we wanted to make sure you could read the output and judge whether
there is overdispersion. For your own data, you should always start by checking for
overdispersion and act accordingly. This is discussed in the next section.
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9.7 Overdispersion

9.7.1 Introduction

Overdispersion means the variance is larger than the mean. How do you know
your model is overdispersed? There are two options. The first is based on the X2

approximation of the residual deviance. If there is overdispersion, then D/φ is Chi-
square distributed with n – p degrees of freedom, and this leads to the following
estimator for φ:

φ̂ = D

n − p
(9.8)

In this case, it is 270.23/42 = 6.43. If this ratio is about 1, then you can safely
assume there is no overdispersion and proceed to the model validation process. In
this case the ratio is larger than 1 and provides evidence for overdispersion. Note this
only identifies overdispersion. The model (and software) does not take into account
of the overdispersion and we therefore cannot present the results as they are. Also
note that the use of the estimator in Equation (9.8) is not without criticism.

The second option is to use a different estimator based on the so-called Pearson
residuals and let the software make the corrections required for overdispersion (i.e.
correct the standard errors and tell us the magnitude of the overdispersion based on
the estimator using the Pearson residuals). But we have not yet discussed residuals
for Poisson GLMs yet. This will be done in Section 9.8.

9.7.2 Causes and Solutions for Overdispersion

Hilbe (2007) discriminates between apparent and real overdispersion. Apparent
overdispersion is due to missing covariates or interactions, outliers in the response
variable, non-linear effects of covariates entered as linear terms in the systematic
part of the model, and choice of the wrong link function. These are mainly model
misspecifications. There are a couple of interesting examples in Hilbe (pg. 52–61,
2007). For example, he simulates a Poisson variable using five explanatory vari-
ables X1 to X5, applies a Poisson model using only explanatory variables X2 to X4,
and shows how this causes overdispersion. Similar examples are given for the effects
of outliers and using the wrong link function.

Real overdispersion exists when we cannot identify any of the previous men-
tioned causes. This can be because the variation in the data really is larger than the
mean. Or there may be many zeros (which may, or may not, cause overdispersion),
clustering of observations, or correlation between observations.

If adding covariates and interactions does not help, there is a quick-fix that can
be tried before considering more complicated methods like the negative binomial
GLM.
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9.7.3 Quick Fix: Dealing with Overdispersion in a Poisson GLM

We can deal with overdispersion in the GLM by using a quasi-Poisson GLM, which
consists of the following steps:

1. The mean and variance of Yi are given by E(Yi) = μi and var(Yi) = φ × μi.
2. The systematic part is given by η(Xi1, . . . , Xiq) = α + β1 × Xi1 + . . . + βq × Xiq.
3. There is a logarithmic link between the mean of Yi and the predictor function

η(Xi1, . . . , Xiq).

The difference between the Poisson GLM and the Poisson GLM with overdis-
persion is that we no longer explicitly specify a Poisson distribution, but only a
relationship between the mean and variance of Yi.

Although we do not specify a Poisson distribution, we still use the same type of
model structure in terms of the link function and predictor function. If the dispersion
parameter φ = 1, we get the same results (in terms of estimated parameters and
standard errors) as the Poisson GLM.

If φ > 1, we talk about overdispersion, and if φ < 1, we have underdispersion.
The latter means that the variance of the response variable is smaller than you would
expect from a Poisson distribution. Reasons for underdispersion are the model is
fitting a couple of outliers rather too well or there are too many explanatory variables
or interactions in the model (overfitting). If this is not the case, then the consensus
is not to correct for underdispersion. Models that take underdispersion into account
are discussed in Chapter 7 of Hilbe (2007).

If φ > 1, we need to correct for the overdispersion, which basically means refit-
ting the model, estimating the parameter φ, and ‘making some corrections’. Before
addressing these corrections, we look at the following questions first:

1. How do we estimate the dispersion parameter φ?
2. How much larger than 1 should it be before we need to make a correction?
3. What is the effect of introducing a dispersion parameter φ?
4. At which point do we decide to do take an alternative approach?

The first question can only be answered in detail towards the end of Section
9.8 because the estimation of φ is based on residuals and we have not yet defined
residuals for a GLM. The second question can only be answered in light of the
third question. The price we pay for introducing a dispersion parameter φ, is that
the standard errors of the parameters are multiplied with the square root of φ. For
example, if φ is equal to 9, then all standard errors are multiplied by 3, and the
parameters become less significant. If the parameters of a Poisson GLM are highly
significant, then a small correction of the standard errors due to overdispersion, say
φ = 1.5, is not going to make any differences in the biological conclusions. But if
you have a parameter with a p-value of 0.03, then multiplying the standard error
with the square root of 1.5 may change the p-value in something that is no longer
significant at the 5% level. So, it all depends: In general a φ larger than 1.5 means
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that some action needs to be taken to correct it. Various tests for overdispersion are
discussed in Hilbe (2007). For the fourth question, if φ is larger than 15 or 20, then
you also need to consider other methods (e.g. the negative binomial GLM or zero-
inflated models), see the negative binomial model in Section 9.10 and the models
for zero-inflated data in Chapter 11.

9.7.4 R Code and Numerical Output

In R, the following command is required for this quick fix approach to correct for
overdispersion.

> M4 <- glm(TOT.N ∼ OPEN.L + MONT.S + SQ.POLIC +

SQ.SHRUB + SQ.WATRES + L.WAT.C + SQ.LPROAD +

SQ.DWATCOUR + D.PARK,

family = quasipoisson, data = RK)

You can see the only difference is specifying the family option as
quasipoisson instead of poisson. This gives the impression that there is a
quasi-Poisson distribution, but there is no such thing! All we do here is specify the
mean and variance relationship and an exponential link between the expected values
and explanatory variables. It is a software issue to call this ‘quasipoisson’. Do not
write in your report or paper that you used a quasi-Poisson distribution. Just say that
you did a Poisson GLM, detected overdispersion, and corrected the standard errors
using a quasi-GLM model where the variance is given by φ × μ, where μ is the
mean and φ the dispersion parameter. To get the numerical output for this model,
use summary(M4), which gives

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.749e+00 3.814e-01 9.830 1.86e-12

OPEN.L -3.025e-03 3.847e-03 -0.786 0.43604

MONT.S 8.697e-02 3.309e-02 2.628 0.01194

SQ.POLIC -1.787e-01 1.139e-01 -1.570 0.12400

SQ.SHRUB -6.112e-01 2.863e-01 -2.135 0.03867

SQ.WATRES 2.243e-01 1.717e-01 1.306 0.19851

L.WAT.C 3.355e-01 1.005e-01 3.338 0.00177

SQ.LPROAD 4.517e-01 3.282e-01 1.376 0.17597

SQ.DWATCOUR 7.355e-03 1.188e-02 0.619 0.53910

D.PARK -1.301e-04 1.445e-05 -9.004 2.33e-11

Dispersion parameter for quasipoisson family taken to

be 5.928003

Null deviance: 1071.44 on 51 degrees of freedom

Residual deviance: 270.23 on 42 degrees of freedom

AIC: NA
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Note that the ratio of the residual deviance and the degrees of freedom is still
larger than 1, but that is no longer a problem as we now allow for overdispersion.
The dispersion parameter φ is estimated as 5.93. This means that all standard errors
have been multiplied by 2.43 (the square root of 5.93), and as a result, most para-
meters are no longer significant! We can move onto model selection.

9.7.5 Model Selection in Quasi-Poisson

The model selection process in quasi-Poisson GLMs is similar to Poisson GLMs;
however, there are small, but important differences. First of all, in quasi-Poisson
models the AIC is not defined. Hence, there is no automatic backward or forward
selection with the step function! The hypothesis testing approach is also slightly
different. The analysis of deviance approach to compare two nested models M1 (full
model) and M2 (nested model) uses a different test statistic:

D2 − D1

φ(p1 − p2)
∼ Fp1−p2,n−p1 (9.9)

where φ is the overdispersion parameter, and p1 + 1 and p2 + 1 are the number of
regression parameters in models M1 and M2, respectively. The ‘+1’ is for the inter-
cept. Under the null-hypothesis, the regression parameters of the omitted explana-
tory variables are equal to zero, and the F-ratio follows an F-distribution with
p1 − p2 and n – p1 degrees of freedom (n is the number of observations).

Using the command drop1(M4,test = "F") gives us the equivalent of the
drop1 function for the Poisson GLM; one term is dropped in turn. The output is as
follows.

Single term deletions

Model: TOT.N ∼ OPEN.L + MONT.S + SQ.POLIC + SQ.SHRUB +

SQ.WATRES + L.WAT.C + SQ.LPROAD + SQ.DWATCOUR + D.PARK

Df Deviance F value Pr(F)

<none> 270.23

OPEN.L 1 273.93 0.5739 0.452926

MONT.S 1 306.89 5.6970 0.021574

SQ.POLIC 1 285.53 2.3776 0.130585

SQ.SHRUB 1 298.31 4.3635 0.042814

SQ.WATRES 1 280.02 1.5217 0.224221

L.WAT.C 1 335.47 10.1389 0.002735

SQ.LPROAD 1 281.25 1.7129 0.197727

SQ.DWATCOUR 1 272.50 0.3526 0.555802

D.PARK 1 838.09 88.2569 7e-12

These results suggest dropping SQ.DWATCOUR from the model and then refit-
ting the model with the remaining terms to see if there are still any non-significant
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Fig. 9.5 Fitted line of the optimal quasi-Poisson model using only D.PARK as the explanatory
variables. R code to make this graph is given on the book’s website

terms. After doing this, some terms are still non-significant so the process has
to be repeated. The variables were dropped in the following order: OPEN.L,
SQ.WATRES, SQ.LPROAD, SQ.SHRUB, SQ.POLIC, MONT.S, and L.WAT.C.
Finally, we ended up with a model that only contained D.PARK. So, ignoring
overdispersion can result in a completely different biological conclusion!

We finally present the numerical output of the quasi-Poisson model that uses
only D.PARK. Its estimated parameters, standard errors, etc. are given below and
the fitted line is presented in Fig. 9.5. Note that the confidence intervals around the
line are now larger than before due to the overdispersion correction.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.316e+00 1.194e-01 36.156 < 2e-16

D.PARK -1.058e-04 1.212e-05 -8.735 1.24e-11

Dispersion parameter for quasipoisson family taken to

be 7.630148

Null deviance: 1071.4 on 51 degrees of freedom

Residual deviance: 390.9 on 50 degrees of freedom

9.8 Model Validation in a Poisson GLM

Just as in linear regression, we have to apply a model validation after we have
decided on the optimal GLM, and the residuals are an important tool for this. Earlier
in linear regression and additive modelling, these were defined as

Linear regression : ε̂i = yi − μ̂i = yi − α̂ − β̂1 × Xi1 − · · · − β̂q × Xiq

Additive modelling : ε̂i = yi − μ̂i = yi − α̂ − f̂1(Xi1) − · · · − f̂q (Xiq )
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We used the notation ˆ to indicate that we are working with estimated values,
parameters, or smoothing functions. To save space, we focus on the GLM, but the
approach is identical for the GAM.

The question is as follows: What are residuals in a GLM? An obvious starting
point would be to define residuals in exactly the same way as we do for linear
regression using yi − μi, which is the vertical distance between an observation and
the solid line in Fig. 9.5. The next question is whether a large residual at D.PARK=
1000 m is any worse than a large residual at D.PARK = 20000 m? The answer is
not as easy as it may look, and we discuss this next!

9.8.1 Pearson Residuals

As for larger fitted values (left part of the fitted line) with Poisson distributions, we
can allow for more variation around the line than with other distributions. Therefore,
while we still want to see small residuals yi − μi for small values of μi, residuals are
allowed to be larger for larger μi. That makes a plot of the residuals yi − μi versus
fitted values μi, one of our prime graphs in Chapters 2 and 4, not particularly useful
here.

In Chapter 4, we had a similar problem and our solution was to divide the resid-
uals yi − μi by the square root of the variance of Yi, also called the normalised
residuals. Here, we can do the same and call them the Pearson residuals.

ε̂P
i = yi − μ̂i√

var(Yi )
= yi − μ̂i√

μ̂i
(9.10)

For this, each residual is divided by the square root of the variance. The name
‘Pearson’ (for a Poisson GLM) is because squaring and summing all the Pearson
residuals gives you the familiar Pearson Chi-square goodness of fit criteria.

When we use an overdispersion parameter φ, the variance is adjusted with this
parameter, and we divide the residuals yi − μi by the square root of φμi.

It is also possible to define standardised Pearson residuals by dividing the Pearson
residuals by the square root of 1 – hi, where hi is the leverage of observation i; see
also Appendix A.

9.8.2 Deviance Residuals

Recall that the residual deviance is the GLM equivalent of the residual sum of
squares; the smaller the better. It would be nice to know the contribution of each
observation (case) to the residual deviance. Perhaps some observations are not fitted
well by the model, and this can be detected by looking at the deviance residuals.
They are defined by

ε̂D
i = sign(yi − μi )

√
di (9.11)
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The notation ‘sign’ stands for sign and has the value 1 if yi is larger than μi, and
−1 if yi is smaller than μi. The quantity di is the contribution of the ith observation
to the deviance. The di was formulated in Section 9.5.3. The sum of squares of the
deviance residuals di equals the residual deviance D.

9.8.3 Which One to Use?

So, we have three types of residuals in a GLM: (i) the ordinary residuals yi − μi, also
called the response residuals, (ii) the Pearson residuals, and (iii) deviance residuals.
In fact, there are more types of residuals (e.g. working residuals and Anscombe
residuals, see McCullagh and Nelder (1989)), but these are the most popular ones
for the purpose of model validation. Which one should we use?

By default, R uses the deviance residuals, and for most data sets used in this book,
there is not much difference between using Pearson or deviance residuals for a Pois-
son GLM. This may not, however, be the case for data sets with lots of zeros (small
variance) or for Binomial GLMs. McCullagh and Nelder (p. 398, 1989) recommend
using the deviance residuals for model checking as these have distributional proper-
ties that are closer to the residuals from a Gaussian linear regression model than the
alternatives; use Pierce and Schafer (1986) for a justification.

However, it should be noted that we are not looking for normality from the
Pearson or deviance residuals. It is all about lack of fit and looking for patterns
in the deviance or Pearson residuals.

9.8.4 What to Plot?

We need to take the residuals of choice (e.g. deviance) and plot them against (i) the
fitted values, (ii) each explanatory variable in the model, (iii) each explanatory vari-
able not in the model (the ones not used in the model, or the ones dropped during the
model selection procedure), (iv) against time, and (v) against spatial coordinates, if
relevant. We do not want to see any patterns in these graphs. If we do, then there is
something wrong, and we need to work out what it is.

If there are patterns in the graph with residuals against omitted explanatory vari-
ables, then the solution is simple; include them in the model. If there are patterns
in the graph showing residuals against each explanatory variable used in the model,
then either include quadratic terms, use GAM, or conclude that there is violation
of independence. If you plot the residuals against time or spatial coordinates, and
there are patterns, conclude you are violating the assumption of independence. Pat-
terns in spread (detected by plotting residuals against fitted values) may indicate
overdispersion or use of the wrong mean-variance relationship (e.g. wrong choice
of distribution).

Violation of independence nearly always means that an important covariate was
excluded from the model. If you did not measure it, then if possible, go back into
the field and measure it now. That is assuming you have any idea of what the
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missing covariate might be! If this is not an available solution, then curse yourself
for a poor experimental design and hope that applying a generalised linear mixed
model or generalised estimation equation (GEE) will bale you out. See Chapters 12
and 13.

9.9 Illustration of Model Validation in Quasi-Poisson GLM

To explain model validation, we use the optimal quasi-Poisson GLM for the amphib-
ian roadkills data. Recall from Section 9.7.5 that there was an overdispersion of 7.63
and that the only significant explanatory variable was D.PARK. Figure 9.6 shows the
standard output from a plot command, and Fig. 9.7 contains the response residu-
als, Pearson residuals, scaled Pearson residuals (we divided the Pearson residuals by
the square root of the overdispersion parameter), and the deviance residuals. Both
figures indicate that there is a clear pattern in the residuals. Note that it is hard
to detect any differences between Pearson and deviance residuals. Some additional
exploration into the residuals against other explanatory variables and spatial loca-
tions is done in Chapter 16.

As in linear regression, we can also use leverage and the Cook distance statistic.
There are no influential observations.

The following R code was used to produce Figs. 9.6 and 9.7.

> M5 <- glm(TOT.N ∼ D.PARK, family = quasipoisson, data = RK)

> EP <- resid(M5, type = "pearson")

> ED <- resid(M5, type = "deviance")

> mu <- predict(M5, type = "response")

> E <- RK$TOT.N - mu

> EP2 <- E / sqrt(7.630148 * mu)

> op <- par(mfrow = c(2, 2))

> plot(x = mu, y = E, main = "Response residuals")

> plot(x = mu, y = EP, main = "Pearson residuals")

> plot(x = mu, y = EP2,

main = "Pearson residuals scaled")

> plot(x = mu, y = ED, main = "Deviance residuals")

> par(op)

The first line re-applies the quasi-Poisson model, even though we could have
omitted it as we had already applied it in the previous subsection. EP and ED
are the Pearson and deviance residuals, respectively. Unfortunately, the function
resid ignores the overdispersion; so we need to manually divide the Pearson
residuals by the square root of 7.63 or calculate these residuals from scratch
(as we did here). The rest of the code plots the residuals and should be self
explanatory.
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Fig. 9.6 Standard output from a GLM function applied on the amphibian roadkills data obtained
by the plot command
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Fig. 9.7 Response residuals (observed minus fitted values, also called ordinary residuals), Pearson
residuals, scaled Pearson residuals (the overdispersion is taken into account) and the deviance
residuals for the optimal quasi-Poisson model applied on the amphibian roadkills data
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The last thing we explain is how the overdispersion parameter φ in a Poisson
GLM is estimated by R. It takes the Pearson residuals, squares them, adds them all
up, and then divides the sum by n – p, where n is the number of observations and
p the number of regression parameters (slopes) in the model. Check it with the R
command sum(EP ˆ2) / (52 – 1).

9.10 Negative Binomial GLM

9.10.1 Introduction

In the previous sections of this chapter, we applied Poisson GLM on the amphibian
roadkills data set and found that there is an overdispersion of 7.63. Consequently,
all standard errors were corrected by multiplying them with the square root of 7.63
when we applied the quasi-Poisson model. An alternative approach is to apply the
negative binomial model. In Chapter 16, a negative binomial GAM is applied on
the amphibian roadkills data, but for illustration purposes we apply the negative
binomial GLM here.

Books that contain a chapter on the negative binomial GLM are for example
Venables and Ripley (2002), Agresti (2002), or Gelman and Hill (2007). A book
dedicated to negative binomial regression is Hilbe (2007). If you are going to apply
the negative binomial GLM, then this book is a ‘must read’. It even discusses neg-
ative binomial GLMM models. Stata, rather than R, is used for this book, but this
does not dominate the text.

Just as for Gaussian and Poisson GLMs, we specify the model with three steps.
The NB GLM is given by

1. Yi is negative binomial distributed with mean μi and parameter k (see also Chap-
ter 8). By definition, the variance of Yi is also equal to μi and its variance is
μi + μi

2 / k.
2. The systematic part is given by η(Xi1, . . . , Xiq) = α + β1 × Xi1 + . . . + βq × Xiq.
3. There is a logarithm link between the mean of Yi and the predictor function

η(Xi1,. . ., Xiq). The logarithmic link (also called log link) ensures that the fitted
values are always non-negative.

As a result of these three steps, we have

Yi ∼ N B(μi , k)

E(Yi ) = μi and var(Yi ) = μi + μ2
i

k
log(μi ) = η(Xi1, · · · , Xiq ) or μi = eη(Xi1,··· ,Xiq )

(9.12)

To estimate the regression parameters, we need to specify the likelihood criterion,
and obtain the first-order and second-order derivatives. The process is the same as
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for the Poisson GLM in Section 9.4. To avoid repetition, we only show how the log
likelihood criterion is derived.

Recall from Chapter 8 that the negative binomial probability function is given by

f (yi ; k, μi ) = Γ(yi + k)

Γ(k) × Γ(yi + 1)
×

(
k

μi + k

)k

×
(

1 − k

μi + k

)y

(9.13)

These probability functions are then used in the log likelihood criterion:

log(L) =
∑

i
log( f (yi ; k, μi )) (9.14)

It is now a matter of substituting Equation (9.13) into the log likelihood function
in (9.14), and using high school mathematics to simplify things. There is some con-
tradiction in the literature regarding how much you should simplify this equation.
For example, Equation (5.30) in Hilbe (2007) looks very different from the one we
have here, but it is exactly the same thing, just written down differently. If you start
inspecting these equations, do not panic if you find differences; some textbooks have
small mistakes! Keeping it simple gives us

log(L) =
∑

i
log( f (yi ; k, μi ))

=
∑

i
(k × log

(
k

μi + k

)
+ yi × log

(
μi

μi + k

)
+ log(Γ(yi + k))

− log(Γ(k)) − log(Γ(yi + 1)))

(9.15)

This can be further simplified. It is also possible to express the NB probability
function in Equation (9.13) as an exponential function. The advantage of this is that
the whole model can be written in the same notation as the other GLMs; see also
Section 13.2.2 in Hardin and Hilbe (2007).

The function glm.nb from the MASS package can be used to apply the negative
binomial GLM in R. We start with all 11 explanatory variables again.

> library(MASS)

> M6 <- glm.nb(TOT.N ∼ OPEN.L + MONT.S + SQ.POLIC +

SQ.SHRUB + SQ.WATRES + L.WAT.C + SQ.LPROAD +

SQ.DWATCOUR + D.PARK, link = "log", data = RK)

You can choose from the logarithmic, identity, and square root link function, and
an example with the identity link can be found in Agresti (2002). Here, we use the
logarithmic link (which is also the default link in the function glm.nb, but not
the canonical link function); so we can compare the results with those from the
Poisson GLM. The command summary(M6, cor = FALSE) gives the relevant
numerical output.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.951e+00 4.145e-01 9.532 <2e-16

OPEN.L -9.419e-03 3.245e-03 -2.903 0.0037

MONT.S 5.846e-02 3.481e-02 1.679 0.0931

SQ.POLIC -4.618e-02 1.298e-01 -0.356 0.7221

SQ.SHRUB -3.881e-01 2.883e-01 -1.346 0.1784

SQ.WATRES 1.631e-01 1.675e-01 0.974 0.3301

L.WAT.C 2.076e-01 9.636e-02 2.154 0.0312

SQ.LPROAD 5.944e-01 3.214e-01 1.850 0.0644

SQ.DWATCOUR -1.489e-05 1.139e-02 -0.001 0.9990

D.PARK -1.235e-04 1.292e-05 -9.557 <2e-16

Dispersion parameter for Negative Binomial(5.5178)

family taken to be 1

Null deviance: 213.674 on 51 degrees of freedom

Residual deviance: 51.803 on 42 degrees of freedom

AIC: 390.11

Theta: 5.52

Std. Err.: 1.41

2 x log-likelihood: -368.107

The output is similar to the Poisson GLM output, except we also get a parameter
theta, which is the k in the negative binomial variance function. We also get its
standard error, but care is needed with its use as the interval is not symmetric and
we are testing on the boundary. Note that as half of the regression parameters are
not significant at the 5% level, a model selection is required.

The available tools for a model selection are similar to those we have seen in the
previous section: hypothesis testing and using a model selection tool like the AIC.
For hypothesis testing, we can use

1. The z-statistic (table above).
2. Analysis of deviance tables obtained by the anova(M6, test = "Chi")

command (this is doing sequential testing).
3. Drop each term in turn and compare the full model with a nested model using

the drop1(M6, test = "Chi")command.
4. Manually specifying a nested model, call it for example M7, and use the com-

mand anova(M6, M7, test = "Chi").

An automatic backward (or forward) selection procedure based on the AIC can
be applied by the command step(M6) or stepAIC(M6). The latter option is the
main advantage over quasi-Poisson, where we do not have a likelihood function and
therefore cannot use AIC and automatic selection procedures.

A negative binomial model can also be overdispersed, and the approach described
earlier of using the ratio of the residual deviance and the degrees of freedom can
be used. In this case, there is a small amount of overdispersion. A quasi-negative
binomial option does not exist.
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Hilbe (2007) discusses a large range of extensions that can be applied (see his
Table 5.1). It is even possible to model the parameter k as a function of covari-
ates, but you may have to program your own model in R. Another exotic cousin
of the negative binomial model is the NB-P model, which has as variance μi +
μi

p/k. If p = 2, we end up with the ordinary NB GLM again. These are all use-
ful options if there is overdispersion in the NB GLM, but appropriate R software
is scarce.

9.10.2 Results

The intermediate results of the model selection (using first the AIC and then some
fine tuning using hypothesis testing) is not given here, but the final model con-
tains the explanatory variables OPEN.L and D.PARK. You could also decide to use
L.WAT.C as well because its p-value in a model with OPEN.L and D.PARK is
0.02. We decided to drop it, because these p-values are approximate, and it is so
close to the magic 5% level.

Our optimal model and its numerical and graphical output are obtained by the
following R code.

> M8 <- glm.nb(TOT.N ∼ OPEN.L + D.PARK, link = "log",

data = RK)

> summary(M8)

> drop1(M8, test = "Chi")

> op <- par(mfrow = c(2, 2))

> plot(M8)

> par(op)

The output from the drop1 function is given below. Both explanatory variables
are significant at the 5% level.

Single term deletions

Model: TOT.N ∼ OPEN.L + D.PARK

Df Deviance AIC LRT Pr(Chi)

<none> 51.84 385.43

OPEN.L 1 59.73 391.32 7.89 0.004967

D.PARK 1 154.60 486.19 102.76 < 2.2e-16

The summary command gives

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.6717034 0.1641768 28.455 <2e-16

OPEN.L -0.0093591 0.0031952 -2.929 0.0034

D.PARK -0.0001119 0.0000113 -9.901 <2e-16
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Dispersion parameter for Negative Binomial(4.1328)

family taken to be 1

Null deviance: 170.661 on 51 degrees of freedom

Residual deviance: 51.839 on 49 degrees of freedom

AIC: 387.43

Theta: 4.133

Std. Err.: 0.980

2 x log-likelihood: -379.432

Theta is the parameter k from the variance function. Note that the analysis of
deviance results gives slightly different p-values compared to the z-statistics, but the
biological conclusions will be similar. The graphical validation plots are presented
in Fig. 9.8 and do not show any problems.

The model seems to suggest that the further away you are from the park, the
fewer roadkills. Open land cover also has a negative effect of roadkill numbers.

So, which model is better, the quasi-Poisson or the negative binomial GLM?
The answer is simple: the quasi-Poisson model has patterns in the residuals and the
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Fig. 9.8 Graphical validation tools for the negative binomial GLM. The graphs do no indicate
any problems. We also plotted Pearson residuals versus the fitted values (not shown here), and this
graph did not show any problems neither
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negative binomial has no patterns, so this is the preferred model. Adding OPEN.L
as an explanatory variable to the quasi-Poisson model does not remove the pattern.
A bonus of the negative binomial GLM is that the AIC is defined, which allows us
to do automatic selection procedures.

If the residual graphs do not show a clear winner, then you can also apply a test
to compare the NB and Poisson GLMs; they are nested. The variance of the Poisson
is: var(Yi) = μi, and for the NB we have var(Yi) = μi + μi

2/k. We can also write
the variance of the NB model as var(Yi) = μi + α × μi

2. The models will give the
same variance if α = 0; so we can use a likelihood ratio test and the null hypothe-
sis is H0: α = 0. However, we are testing on the boundary again (the alternative is
H1: α > 0. We saw a similar problem when we tested the significance of a ran-
dom effect in Chapter 5, and the same solution of dividing the p-value by 2 can be
applied. The Poisson model with OPEN.L and D.PARK is fitted with

> M9 <- glm(TOT.N ∼ OPEN.L + D.PARK, family = poisson,

data = RK)

The log likelihood test is obtained by

> llhNB = logLik(M8)

> llhPoisson = logLik(M9)

> d <- 2 * (llhNB - llhPoisson)

> pval <- 0.5 * pchisq(as.numeric(d), df = 1,

lower.tail = FALSE)

The statistic is equal to 244.66, and the p-value is p < 0.001. Note that we divided
the p-value by 2. Hence, there is strong support for the negative binomial model.
The same result can be obtained with the command odTest(M8) from the pscl
package, which is not part of the base installation.

The amphibian roadkills data set is further analysed in Chapter 16. A compari-
son of the Poisson, quasi-Poisson, negative binomial, and three alternative models
in case there are lots of zeros (the hurdle model, zero-inflated Poisson, and zero-
inflated negative binomial models) is presented in Chapter 11.

9.11 GAM

Having explained Gaussian additive models in detail in Chapter 3 and the Poisson
and negative binomial GLM in detail in earlier sections in this chapter, it is rather
simple to explain Poisson or negative binomial GAM. A Poisson GAM has these
assumptions:

1. Yi is Poisson distributed with mean μi. By definition the variance of Yi is also
equal to μi.
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2. The systematic part is given by η(Xi1, . . ., Xiq) = α + f1(Xi1) + . . . + fq(Xiq), where
the fjs are smoothing functions.

3. There is a logarithm link between the mean of Yi and the predictor function
η(Xi1, . . ., Xiq). The logarithmic link ensures that the fitted values are always
non-negative.

As a result of these three assumptions, we have

Yi ∼ P(μi )

E(Yi ) = μi and var(Yi ) = μi

log(μi ) = η(Xi1, · · · , Xiq ) or μi = eη(Xi1,··· ,Xiq )

(9.16)

For a negative binomial GAM, we only have to change step 1 from the Poisson
distribution to a negative binomial distribution and the variance is then given by
μi + μi

2/k. A detailed example of the negative binomial GAM is given in
Chapter 16. Below, we present a short example of a GAM that also illustrates the
use of the offset variable in Poisson and NB GLMs and GAMs.

9.11.1 Distribution of larval Sea Lice Around Scottish Fish Farms

The data used in this example are taken from Penston et al. (2008). Plankton tows
were taken approximately weekly at two depths (0 and 5 m) at five stations for two
years. In the original paper, numbers of nauplii and copepodids were analysed in
two separate univariate analysis where production week (time expressed in weeks
since March 2002, when the local farms stocked their cages with lice-free, juvenile
fish), station, and depth were the covariates. There are five stations labelled as A,
C, E, F, and G. Stations C and G are beside salmon farms, stations A and F are
landward of these farms, and station E is seaward of the farms. Here, we only use
copepodids. Further biological details can be found in Penston et al. (2008).

There are three potential problems with the analysis of these data: we have lon-
gitudinal (over time) data at each station, there may be correlation between adjacent
stations, and there is a large variation in the sampled water volume. As to the first
two problems, we follow the same strategy as the paper by showing there is no tem-
poral correlation within each of the residual time series, and that there are no strong
Pearson correlations between the 5 residual time series. The third problem of differ-
ent volumes per observation was discussed in Chapter 8. Define Yi as the number of
copepodids measured for observation i. We could have used a notation Ysk, referring
to observation s at station k, but we will keep the notation simple and stick to Yi. As
Yi is a count, a Poisson, negative binomial or geometric distribution is appropriate.
We start with the Poisson distribution. So far in this chapter, we assumed that Yi

is Poisson distributed with mean μi, which we wrote as P(μi) with its probability
function as
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f (yi ; μi ) = μ
yi

i e−μi

yi !
yi ≥ 0, yi integer (9.17)

The problem with these data is that the water volumes differ per observation,
see Fig. 9.9. We may measure a large number of copepodids simply because the
water volume was large. The easiest solution is to work with densities, and analyse
these with a Gaussian distribution. The disadvantage of this is that the fitted values
may become negative, there may be heterogeneity, etc. It is also an option to use
Volume as an explanatory variable, but then you would be modelling a functional
relationship between Volume and numbers of copepodids. A neater approach is to
use Volume as an offset; this process works as follows.

Assume that Yi is Poisson distributed with mean μi × Vi. Vi is also called the
exposure or intensity parameter of the Poisson process, and μi is the expected num-
ber of copepodids for a one unit volume. The expected value and variance are:
E(Yi) = μi × Vi and var(Yi) = μi × Vi. The following simple algebra leads to a
GLM (or GAM) with an offset variable.

E(Yi ) = μi × Vi ⇒ log(E(Yi )) = log(μi ) + log(Vi ) = α + β × Xi1

+ f (X2i ) + log(Vi )

The term log(Vi), where log is the natural log, is the offset. Using basic math-
ematics, we have placed the Vi inside the predictor function, but note there is no
regression parameter in front of this term. The other terms α and β are the regression
parameters and f() is a smoothing function. R will estimate the regression parame-
ters and smoothers, and you can express the fitted values of the model either as μi

or as μi × Vi.
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Fig. 9.9 Cleveland dotplot
of the sampled volumes.
Note that there are
considerable differences in
volumes! The graph was
produced with the R
command dotchart
(Volume, xlab =
"Value" , ylab =
"Observations")
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The offset can be used for a Poisson, negative binomial, and geometric distribu-
tion. The advantages of the offset approach compared to analysing densities are that
the fitted values are always positive, the confidence intervals around the fitted values
do not contain negative values, and we allow for heterogeneity within the context of
a Poisson or NB distribution.

To use an offset variable in a GLM or GAM in R, use the following code.

> library(AED); data(Lice)

> Lice$LVol <- log(Lice$Volume)

> Lice$fStation <- factor(Lice$Station)

> L0 <- glm(Copepod ∼ offset(LVol) + fStation,

family = poisson, data = Lice)

The first two commands import the data. The variable LVol contains the natural
log transformed volumes, and offset(LVol) ensures that the glm function is
not putting a parameter in front of it. The only problem is that unfortunately, the
model itself is rubbish; we have only shown it to illustrate how to use an offset in a
GLM or GAM. So we will now move on and do it for real. There are three explana-
tory variables, Station, Depth (both are factors), and Production week.
Simple scatterplots indicate no clear relationships, and we therefore used a GAM.
We start with a Poisson distribution. The most complicated model that we can
apply contains a smoother for production week for each station and depth com-
bination, the main terms station and depth, and the interaction between station
and depth. This is the GAM equivalent of 3-way interaction. The problem is that
such a model ended in an error message (numerical convergence problems), and
we therefore switched to a negative binomial distribution. The following code
was used.1

> library(mgcv)

> Lice$PW <- Lice$Production week #saves some space

> Lice$fDepth <- factor(Lice$Depth)

> L1 <- gam(Copepod ∼ offset(LVol)+

s(PW, by=as.numeric(Depth=="0m" & Station=="A")) +

s(PW, by=as.numeric(Depth=="0m" & Station=="C")) +

s(PW, by=as.numeric(Depth=="0m" & Station=="E")) +

s(PW, by=as.numeric(Depth=="0m" & Station=="F")) +

s(PW, by=as.numeric(Depth=="0m" & Station=="G")) +

s(PW, by=as.numeric(Depth=="5m" & Station=="A")) +

s(PW, by=as.numeric(Depth=="5m" & Station=="C")) +

s(PW, by=as.numeric(Depth=="5m" & Station=="E")) +

1We used R version 2.6.0. More recent R versions require slightly different code; see the book
website for updated code.
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s(PW, by=as.numeric(Depth=="5m" & Station=="F")) +

s(PW, by = as.numeric(Depth=="5m" & Station=="G")) +

fDepth * fStation,

family = negative.binomial(1), data = Lice)

This model also gave a warning message, but including the option gamma =
1.4 allows the code to run. This option helps against overfitting by the smoothers
(Wood, 2006); it puts a heavier penalty on each degrees of freedom in the GCV
score (Chapter 3).

A backward selection resulted in various numerical problems, and therefore in
the original paper, Penston et al. (2008) adopted a slightly different approach for the
model selection process. They estimated the parameter k (used in the NB variance
function) from one of the larger models, e.g. from L3, and kept it fixed during the
backwards selection. This gave an optimal model, and the whole backward selection
process was then repeated using the k from the first optimal model. Both selection
rounds ended up in the same model, namely,

> L3 <- gam(Copepod ∼ offset(LVol) +

s(PW, by = as.numeric(Depth=="0m")) +

s(PW, by = as.numeric(Depth=="5m")) +

fDepth + fStation, data = Lice,

family = negative.binomial(1), gamma = 1.4)

This model contains a smoother for production week for each depth together with
depth and station as factors. We can compare this model with its Poisson equivalent
using the likelihood ratio test:

> L4 <- gam(Copepod ∼ offset(LVol) +

s(PW,by = as.numeric(Depth=="0m")) +

s(PW,by = as.numeric(Depth=="5m")) +

fDepth + fStation, data = Lice,

family = poisson, gamma = 1.4)

> llhNB <- logLik(L3); llhPoisson <- logLik(L4)

> d <- 2 * (llhNB - llhPoisson)

> pval <- 0.5 * pchisq(as.numeric(d), df = 1,

lower.tail = FALSE)

The likelihood ratio statistic is 2137.20, which is strong evidence to choose the
NB GAM over the Poisson GAM. The numerical output of the NB GAM is obtained
by the summary(L3) command:

Family: Negative Binomial(0.3569). Link function: log

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.7030 0.1956 -8.708 < 2e-16

factor(Depth)5m -1.3921 0.2203 -6.319 5.2e-10
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factor(Station)C -0.3496 0.2513 -1.391 0.16470

factor(Station)E -0.4661 0.2546 -1.830 0.06769

factor(Station)F -0.8455 0.2656 -3.183 0.00153

factor(Station)G 0.1102 0.2524 0.437 0.66253

Approximate significance of smooth terms:

edf F p-value

s(PW):as.numeric(Depth=="0m") 8.36 15.62 < 0.001

s(PW):as.numeric(Depth=="5m") 6.14 5.45 < 0.001

R-sq.(adj) = 0.212. Deviance explained = 72.6%

GCV score = 1.0644. Scale est. = 1. n = 608

The model explains 72.6% of the null deviance. The p-values for the levels of
station only indicate which stations are significantly different from the baseline sta-
tion A (Dalgaard, 2002). A post-hoc test can be applied to investigate which sites
are different from each other. The fitted values are given in Fig. 9.10.

Further discussions on the results, model validation (there was no significant
temporal auto-correlation within the four residual time series), biological interpre-
tation, and analyses can be found in Penston et al. (2008). Besides the NB GAM, it
may also be an option to apply a zero-inflated GAM. These models are discussed in
Chapter 11.
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Fig. 9.10 Estimated smoothing curves for depth at the surface (left) and depth and 5 m (right).
The solid line is the smoother and the dotted lines are 95% point-wise confidence bands




